Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 10(7): eadl4628, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38354247

RESUMO

Native mass spectrometry (MS) has become widely accepted in structural biology, providing information on stoichiometry, interactions, homogeneity, and shape of protein complexes. Yet, the fundamental assumption that proteins inside the mass spectrometer retain a structure faithful to native proteins in solution remains a matter of intense debate. Here, we reveal the gas-phase structure of ß-galactosidase using single-particle cryo-electron microscopy (cryo-EM) down to 2.6-Å resolution, enabled by soft landing of mass-selected protein complexes onto cold transmission electron microscopy (TEM) grids followed by in situ ice coating. We find that large parts of the secondary and tertiary structure are retained from the solution. Dehydration-driven subunit reorientation leads to consistent compaction in the gas phase. By providing a direct link between high-resolution imaging and the capability to handle and select protein complexes that behave problematically in conventional sample preparation, the approach has the potential to expand the scope of both native mass spectrometry and cryo-EM.


Assuntos
Proteínas , Manejo de Espécimes , Microscopia Crioeletrônica/métodos , Proteínas/química , Espectrometria de Massas/métodos , beta-Galactosidase , Manejo de Espécimes/métodos
2.
Nat Commun ; 14(1): 8335, 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38097575

RESUMO

The combination of low-temperature scanning tunnelling microscopy with a mass-selective electro-spray ion-beam deposition established the investigation of large biomolecules at nanometer and sub-nanometer scale. Due to complex architecture and conformational freedom, however, the chemical identification of building blocks of these biopolymers often relies on the presence of markers, extensive simulations, or is not possible at all. Here, we present a molecular probe-sensitisation approach addressing the identification of a specific amino acid within different peptides. A selective intermolecular interaction between the sensitiser attached at the tip-apex and the target amino acid on the surface induces an enhanced tunnelling conductance of one specific spectral feature, which can be mapped in spectroscopic imaging. Density functional theory calculations suggest a mechanism that relies on conformational changes of the sensitiser that are accompanied by local charge redistributions in the tunnelling junction, which, in turn, lower the tunnelling barrier at that specific part of the peptide.


Assuntos
Aminoácidos , Sondas Moleculares , Peptídeos/química , Sequência de Aminoácidos , Microscopia de Tunelamento
3.
Science ; 382(6667): 219-223, 2023 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-37824645

RESUMO

Proteins and lipids decorated with glycans are found throughout biological entities, playing roles in biological functions and dysfunctions. Current analytical strategies for these glycan-decorated biomolecules, termed glycoconjugates, rely on ensemble-averaged methods that do not provide a full view of positions and structures of glycans attached at individual sites in a given molecule, especially for glycoproteins. We show single-molecule analysis of glycoconjugates by direct imaging of individual glycoconjugate molecules using low-temperature scanning tunneling microscopy. Intact glycoconjugate ions from electrospray are soft-landed on a surface for their direct single-molecule imaging. The submolecular imaging resolution corroborated by quantum mechanical modeling unveils whole structures and attachment sites of glycans in glycopeptides, glycolipids, N-glycoproteins, and O-glycoproteins densely decorated with glycans.


Assuntos
Glicoproteínas , Polissacarídeos , Imagem Individual de Molécula , Glicoconjugados/química , Glicolipídeos/química , Glicoproteínas/química , Polissacarídeos/química , Mucina-1/química
4.
Angew Chem Int Ed Engl ; 62(39): e202305733, 2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37522820

RESUMO

Carbohydrates are the most abundant organic material on Earth and the structural "material of choice" in many living systems. Nevertheless, design and engineering of synthetic carbohydrate materials presently lag behind that for protein and nucleic acids. Bottom-up engineering of carbohydrate materials demands an atomic-level understanding of their molecular structures and interactions in condensed phases. Here, high-resolution scanning tunneling microscopy (STM) is used to visualize at submolecular resolution the three-dimensional structure of cellulose oligomers assembled on Au(1111) and the interactions that drive their assembly. The STM imaging, supported by ab initio calculations, reveals the orientation of all glycosidic bonds and pyranose rings in the oligomers, as well as details of intermolecular interactions between the oligomers. By comparing the assembly of D- and L-oligomers, these interactions are shown to be enantioselective, capable of driving spontaneous enantioseparation of cellulose chains from its unnatural enantiomer and promoting the formation of engineered carbohydrate assemblies in the condensed phases.

5.
Sci Rep ; 13(1): 10241, 2023 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-37353650

RESUMO

Conformational changes play a key role in the biological function of many proteins, thereby sustaining a multitude of processes essential to life. Thus, the imaging of the conformational space of proteins exhibiting such conformational changes is of great interest. Low-energy electron holography (LEEH) in combination with native electrospray ion beam deposition (ES-IBD) has recently been demonstrated to be capable of exploring the conformational space of conformationally highly variable proteins on the single-molecule level. While the previously studied conformations were induced by changes in environment, it is of relevance to assess the performance of this imaging method when applied to protein conformations inherently tied to a function-related conformational change. We show that LEEH imaging can distinguish different conformations of transferrin, the major iron transport protein in many organisms, by resolving a nanometer-scale cleft in the structure of the iron-free molecule (apo-transferrin) resulting from the conformational change associated with the iron binding/release process. This, along with a statistical analysis of the data, which evidences a degree of flexibility of the molecules, indicates that LEEH is a viable technique for imaging function-related conformational changes in individual proteins.


Assuntos
Holografia , Transferrina , Transferrina/metabolismo , Elétrons , Conformação Proteica
6.
Essays Biochem ; 67(2): 151-163, 2023 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-36960786

RESUMO

Inline low-energy electron holography (LEEH) in conjunction with sample preparation by electrospray ion beam deposition (ES-IBD) has recently emerged as a promising method for the sub-nanometre-scale single-molecule imaging of biomolecules. The single-molecule nature of the LEEH measurement allows for the mapping of the molecules' conformational space and thus for the imaging of structurally variable biomolecules, thereby providing valuable complementary information to well-established biomolecular structure determination methods. Here, after briefly tracing the development of inline LEEH in bioimaging, we present the state-of-the-art of native ES-IBD + LEEH as a method of single-protein imaging, discuss its applications, specifically regarding the imaging of structurally flexible protein systems and the amplitude and phase information encoded in a low-energy electron hologram, and provide an outlook regarding the considerable possibilities for the future advancement of the approach.


Assuntos
Holografia , Doenças Inflamatórias Intestinais , Humanos , Holografia/métodos , Elétrons , Proteínas
7.
ACS Cent Sci ; 9(2): 151-158, 2023 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-36844500

RESUMO

Molecule-surface collisions are known to initiate dynamics that lead to products inaccessible by thermal chemistry. These collision dynamics, however, have mostly been examined on bulk surfaces, leaving vast opportunities unexplored for molecular collisions on nanostructures, especially on those that exhibit mechanical properties radically different from those of their bulk counterparts. Probing energy-dependent dynamics on nanostructures, particularly for large molecules, has been challenging due to their fast time scales and high structural complexity. Here, by examining the dynamics of a protein impinging on a freestanding, single-atom-thick membrane, we discover molecule-on-trampoline dynamics that disperse the collision impact away from the incident protein within a few picoseconds. As a result, our experiments and ab initio calculations show that cytochrome c retains its gas-phase folded structure when it collides onto freestanding single-layer graphene at low energies (∼20 meV/atom). The molecule-on-trampoline dynamics, expected to be operative on many freestanding atomic membranes, enable reliable means to transfer gas-phase macromolecular structures onto freestanding surfaces for their single-molecule imaging, complementing many bioanalytical techniques.

8.
ACS Nano ; 16(11): 18568-18578, 2022 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-36367752

RESUMO

Low-energy electron holography (LEEH) is one of the few techniques capable of imaging large and complex three-dimensional molecules, such as proteins, on the single-molecule level at subnanometer resolution. During the imaging process, the structural information about the object is recorded both in the amplitude and in the phase of the hologram. In low-energy electron holography imaging of proteins, the object's amplitude distribution, which directly reveals molecular size and shape on the single-molecule level, can be retrieved via a one-step reconstruction process. However, such a one-step reconstruction routine cannot directly recover the phase information encoded in the hologram. In order to extract the full information about the imaged molecules, we thus implemented an iterative phase retrieval algorithm and applied it to experimentally acquired low-energy electron holograms, reconstructing the phase shift induced by the protein along with the amplitude data. We show that phase imaging can map the projected atomic density of the molecule given by the number of atoms in the electron path. This directly implies a correlation between reconstructed phase shift and projected mean inner potential of the molecule, and thus a sensitivity to local changes in potential, an interpretation that is further substantiated by the strong phase signatures induced by localized charges.


Assuntos
Elétrons , Holografia , Holografia/métodos , Algoritmos , Proteínas
10.
Faraday Discuss ; 240(0): 67-80, 2022 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-36065984

RESUMO

An increasing number of studies on biomolecular function indirectly combine mass spectrometry (MS) with imaging techniques such as cryo electron microscopy (cryo-EM). This approach allows information on the homogeneity, stoichiometry, shape, and interactions of native protein complexes to be obtained, complementary to high-resolution protein structures. We have recently demonstrated TEM sample preparation via native electrospray ion-beam deposition (ES-IBD) as a direct link between native MS and cryo-EM. This workflow forms a potential new route to the reliable preparation of homogeneous cryo-EM samples and a better understanding of the relation between native solution-phase and native-like gas-phase structures. However, many aspects of the workflow need to be understood and optimized to obtain performance comparable to that of state-of-the-art cryo-EM. Here, we expand on the previous discussion of key factors by probing the effects of substrate type and deposition energy. We present and discuss micrographs from native ES-IBD samples with amorphous carbon, graphene, and graphene oxide, as well as landing energies in the range between 2 and 150 eV per charge.


Assuntos
Doenças Inflamatórias Intestinais , Proteínas , Humanos , Microscopia Crioeletrônica/métodos , Manejo de Espécimes/métodos , Espectrometria de Massas , Íons
11.
ACS Nano ; 16(9): 14443-14455, 2022 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-36037396

RESUMO

Electrospray ion-beam deposition (ES-IBD) is a versatile tool to study the structure and reactivity of molecules from small metal clusters to large protein assemblies. It brings molecules gently into the gas phase, where they can be accurately manipulated and purified, followed by controlled deposition onto various substrates. In combination with imaging techniques, direct structural information on well-defined molecules can be obtained, which is essential to test and interpret results from indirect mass spectrometry techniques. To date, ion-beam deposition experiments are limited to a small number of custom instruments worldwide, and there are no commercial alternatives. Here we present a module that adds ion-beam deposition capabilities to a popular commercial MS platform (Thermo Scientific Q Exactive UHMR mass spectrometer). This combination significantly reduces the overhead associated with custom instruments, while benefiting from established high performance and reliability. We present current performance characteristics including beam intensity, landing-energy control, and deposition spot size for a broad range of molecules. In combination with atomic force microscopy (AFM) and transmission electron microscopy (TEM), we distinguish near-native from unfolded proteins and show retention of the native shape of protein assemblies after dehydration and deposition. Further, we use an enzymatic assay to quantify the activity of a noncovalent protein complex after deposition on a dry surface. Together, these results not only indicate a great potential of ES-IBD for applications in structural biology, but also outline the challenges that need to be solved for it to reach its full potential.


Assuntos
Doenças Inflamatórias Intestinais , Proteínas , Humanos , Íons , Espectrometria de Massas/métodos , Proteínas/química , Reprodutibilidade dos Testes
12.
PNAS Nexus ; 1(4): pgac153, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36714824

RESUMO

Despite tremendous advances in sample preparation and classification algorithms for electron cryomicroscopy (cryo-EM) and single-particle analysis (SPA), sample heterogeneity remains a major challenge and can prevent access to high-resolution structures. In addition, optimization of preparation conditions for a given sample can be time-consuming. In the current work, it is demonstrated that native electrospray ion-beam deposition (native ES-IBD) is an alternative, reliable approach for the preparation of extremely high-purity samples, based on mass selection in vacuum. Folded protein ions are generated by native electrospray ionization, separated from other proteins, contaminants, aggregates, and fragments, gently deposited on cryo-EM grids, frozen in liquid nitrogen, and subsequently imaged by cryo-EM. We demonstrate homogeneous coverage of ice-free cryo-EM grids with mass-selected protein complexes. SPA reveals that the complexes remain folded and assembled, but variations in secondary and tertiary structures are currently limiting information in 2D classes and 3D EM density maps. We identify and discuss challenges that need to be addressed to obtain a resolution comparable to that of the established cryo-EM workflow. Our results show the potential of native ES-IBD to increase the scope and throughput of cryo-EM for protein structure determination and provide an essential link between gas-phase and solution-phase protein structures.

13.
Proc Natl Acad Sci U S A ; 118(51)2021 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-34911762

RESUMO

Imaging of proteins at the single-molecule level can reveal conformational variability, which is essential for the understanding of biomolecules. To this end, a biologically relevant state of the sample must be retained during both sample preparation and imaging. Native electrospray ionization (ESI) can transfer even the largest protein complexes into the gas phase while preserving their stoichiometry and overall shape. High-resolution imaging of protein structures following native ESI is thus of fundamental interest for establishing the relation between gas phase and solution structure. Taking advantage of low-energy electron holography's (LEEH) unique capability of imaging individual proteins with subnanometer resolution, we investigate the conformational flexibility of Herceptin, a monoclonal IgG antibody, deposited by native electrospray mass-selected ion beam deposition (ES-IBD) on graphene. Images reconstructed from holograms reveal a large variety of conformers. Some of these conformations can be mapped to the crystallographic structure of IgG, while others suggest that a compact, gas-phase-related conformation, adopted by the molecules during ES-IBD, is retained. We can steer the ratio of those two types of conformations by changing the landing energy of the protein on the single-layer graphene surface. Overall, we show that LEEH can elucidate the conformational heterogeneity of inherently flexible proteins, exemplified here by IgG antibodies, and thereby distinguish gas-phase collapse from rearrangement on surfaces.


Assuntos
Holografia/métodos , Imunoglobulina G/química , Imagem Individual de Molécula/métodos , Conformação Proteica , Espectrometria de Massas por Ionização por Electrospray
14.
Small ; 17(42): e2102037, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34528384

RESUMO

Atomic design of a 2D-material such as graphene can be substantially influenced by etching, deliberately induced in a transmission electron microscope. It is achieved primarily by overcoming the threshold energy for defect formation by controlling the kinetic energy and current density of the fast electrons. Recent studies have demonstrated that the presence of certain species of atoms can catalyze atomic bond dissociation processes under the electron beam by reducing their threshold energy. Most of the reported catalytic atom species are single atoms, which have strong interaction with single-layer graphene (SLG). Yet, no such behavior has been reported for molecular species. This work shows by experimentally comparing the interaction of alkali and halide species separately and conjointly with SLG, that in the presence of electron irradiation, etching of SLG is drastically enhanced by the simultaneous presence of alkali and iodine atoms. Density functional theory and first principles molecular dynamics calculations reveal that due to charge-transfer phenomena the CC bonds weaken close to the alkali-iodide species, which increases the carbon displacement cross-section. This study ascribes pronounced etching activity observed in SLG to the catalytic behavior of the alkali-iodide species in the presence of electron irradiation.

15.
Proc Natl Acad Sci U S A ; 118(23)2021 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-34074784

RESUMO

Correlating the structures and properties of a polymer to its monomer sequence is key to understanding how its higher hierarchy structures are formed and how its macroscopic material properties emerge. Carbohydrate polymers, such as cellulose and chitin, are the most abundant materials found in nature whose structures and properties have been characterized only at the submicrometer level. Here, by imaging single-cellulose chains at the nanoscale, we determine the structure and local flexibility of cellulose as a function of its sequence (primary structure) and conformation (secondary structure). Changing the primary structure by chemical substitutions and geometrical variations in the secondary structure allow the chain flexibility to be engineered at the single-linkage level. Tuning local flexibility opens opportunities for the bottom-up design of carbohydrate materials.

16.
J Am Soc Mass Spectrom ; 32(7): 1648-1658, 2021 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-33656859

RESUMO

Electrospray ion beam deposition (ES-IBD) or ion soft landing has been demonstrated as a technique suitable for processing nonvolatile molecules in vacuum under perfectly controlled conditions, an approach also desirable for the deposition of nanoparticles. Here, we present results from several approaches to generate, characterize, and deposit nanoparticle ion beams in vacuum for deposition. We focus on cluster ion beams generated by ESI of organic salt solutions. Small cluster ions of the salts appear in the mass spectra as defined peaks. In addition, we find nanoparticle-sized aggregates, appearing as a low intensity background at high m/z-ratio, and show by IBD experiments that these clusters carry the major amount of material in the ion beam. This transition from clusters to nanoparticles, and their successful deposition, shows that ES-IBD can in principle handle ion beams of very heavy and highly charged nanoparticles. In related experiments, however, we found the deposition of nanoparticles from dispersions to be of low reproducibility, due to the lack of control by mass spectrometry.

17.
Phys Rev Lett ; 126(5): 056001, 2021 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-33605738

RESUMO

Using electrospray ion beam deposition, we collide the complex molecule Reichardt's dye (C_{41}H_{30}NO^{+}) at low, hyperthermal translational energy (2-50 eV) with a Cu(100) surface and image the outcome at single-molecule level by scanning tunneling microscopy. We observe bond-selective reaction induced by the translational kinetic energy. The collision impulse compresses the molecule and bends specific bonds, prompting them to react selectively. This dynamics drives the system to seek thermally inaccessible reactive pathways, since the compression timescale (subpicosecond) is much shorter than the thermalization timescale (nanosecond), thereby yielding reaction products that are unobtainable thermally.

18.
J Am Chem Soc ; 142(51): 21420-21427, 2020 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-33167615

RESUMO

Biomolecules function by adopting multiple conformations. Such dynamics are governed by the conformation landscape whose study requires characterization of the ground and excited conformation states. Here, the conformational landscape of a molecule is sampled by exciting an initial gas-phase molecular conformer into diverse conformation states, using soft molecule-surface collision (0.5-5.0 eV). The resulting ground and excited molecular conformations, adsorbed on the surface, are imaged at the single-molecule level. This technique permits the exploration of oligosaccharide conformations, until now, limited by the high flexibility of oligosaccharides and ensemble-averaged analytical methods. As a model for cellulose, cellohexaose chains are observed in two conformational extremes, the typical "extended" chain and the atypical "coiled" chain-the latter identified as the gas-phase conformer preserved on the surface. Observing conformations between these two extremes reveals the physical properties of cellohexaose, behaving as a rigid ribbon that becomes flexible when twisted. The conformation space of any molecule that can be electrosprayed can now be explored.

19.
ACS Nano ; 14(4): 4626-4635, 2020 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-32283013

RESUMO

Formation and characterization of low-dimensional nanostructures is crucial for controlling the properties of two-dimensional (2D) materials such as graphene. Here, we study the structure of low-dimensional adsorbates of cesium iodide (CsI) on free-standing graphene using aberration-corrected transmission electron microscopy at atomic resolution. CsI is deposited onto graphene as charged clusters by electrospray ion-beam deposition. The interaction with the electron beam forms two-dimensional CsI crystals only on bilayer graphene, while CsI clusters consisting of 4, 6, 7, and 8 ions are exclusively observed on single-layer graphene. Chemical characterization by electron energy-loss spectroscopy imaging and precise structural measurements evidence the possible influence of charge transfer on the structure formation of the CsI clusters and layers, leading to different distances of the Cs and I to the graphene.

20.
Angew Chem Int Ed Engl ; 58(25): 8336-8340, 2019 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-31018027

RESUMO

Saccharides are ubiquitous biomolecules, but little is known about their interaction with, and assembly at, surfaces. By combining preparative mass spectrometry with scanning tunneling microscopy, we have been able to address the conformation and self-assembly of the disaccharide sucrose on a Cu(100) surface with subunit-level imaging. By employing a multistage modeling approach in combination with the experimental data, we can rationalize the conformation on the surface as well as the interactions between the sucrose molecules, thereby yielding models of the observed self-assembled patterns on the surface.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...